Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition — a case study of a Quaternary paleosol from Hungary

Bernadett Bajnóczia,*, Viktória Kovács-Kisb

aInstitute for Geochemical Research, Hungarian Academy of Sciences, Budaörsi út 45, H-1112 Budapest, Hungary
bResearch Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary

Received 10 January 2005; accepted 28 October 2005

Abstract

Pedogenic needle-fiber calcite was studied regarding its morphology, texture and stable isotope composition from the paleosol of the Quaternary Várhegy travertine (Budapest, Hungary). The needle-fiber calcite is composed of 40–200 µm long monocrystals. Smooth rods as well as serrated-edged crystals with calcite overgrowths were identified by SEM. Needles have several textural varieties: randomly distributed crystals in vugs and pores with calcite hypocoatings, bundles of subparallel crystals forming coatings around grains and alveolar structure with bridging needles in vugs.

The morphological study of needle-fiber calcite suggests that needles are calcified fungal sheaths and produced by fungal biomineralization, a common process in recent and fossil soils and calcretes. The stable isotope composition of needle-fiber calcite (average: $\delta^{18}O = -7.1\%$ and $\delta^{13}C = -7.3\%$ vs. V-PDB) indicates significant incorporation of organically derived CO$_2$ and probably biological influence on needle genesis. Dissolved host rock travertine and/or atmospheric CO$_2$ could also contribute some carbon to the acicular calcite.

Keywords: Needle-fiber calcite; Pedogenic carbonate; Paleosol; Biomineralization; Micromorphology; Alveolar texture; Stable isotope; Fungi; Travertine; Quaternary

*Corresponding author.
E-mail address: bajnoczi@geochem.hu (B. Bajnóczi).