

Daniel Topal

sea-ice greenland ocean melting climate risks atmosphere uncertainty ice learning modelling future management future change projections machine

CONTACT ME

- 😭 daniel.topal@uclouvain.be
- Place Louis Pasteur 3/L4.03.08
 1348 Louvain-la-Neuve, Belgium

EDUCATION

PhD in Environmental Physics 2019 - 2023 Eotvos Lorand University

M.Sc in Meteorology 2014 - 2019 Eotvos Lorand University

SKILLS

- UNIX
- Fortran/Python/R
- NEMO4
- CESM
- climate modeling

SCIENTOMETRICS

h-index: 6

Independent (total) citations: 110 (160) Cumulative impact-factor: 143.5 D1/Q1 journal papers: 12

WORK EXPERIENCE

Junior Research Fellow Research Centre for Astronomy and Earth Sciences, Hungarian Research Network	2019 - present
Postdoctoral fellow Université catholique de Louvain	2023 - present
Affiliated researcher University of California Santa Barbara	2018 - present
Visiting Junior Researcher Central European University	2022

PROJECTS AS PI

Bilateral Science & Technology grant no. 2019-2.1.11-TÉT-2020-00114 Co-operative Doctoral Student Fellowship [2020 - 2022] New National Excellence Programme [2019 - 2023]

SELECTED GRANTS & AWARDS

Junior Prima Award Nominee of the Hungarian Republic Visegrad Group Academies Young Researcher Award [2023] Fulbright Visiting Student Researcher [2021 - 2022] Sólyom-ösztöndíj [2018] 4x New National Excellence Program scholarship 2x Nation's Young Talent Scholarship

REVIEWER ACTIVITY

Nature Communications, Scientific Reports, Geophysical Research Letters Journal of Climate, Nature Reviews Earth and Environment

LINKS

Google Scholar ResearchGate

PUBLICATIONS

14.* Hanna, E., **Topál, D.** et al. Short- and long-term variability of the Antarctic and Greenland ice sheets, *Nature Reviews Earth and Environment*, accepted (2023)

13. Demény, A., Czuppon, G., Kern, Z., Hatvani, I., **Topál, D.**, et al. A speleothem record of seasonality and moisture transport around the 8.2 ka event in Central Europe (Vacska Cave, Hungary). *Quaternary Research*, 1-16, (2023)

12.* Feng, X., Q. Ding, L. Wu, C. Jones, H. Wang, M. Bushuk, and **D. Topál**, Comprehensive representation of tropical-extratropical teleconnections obstructed by tropical Pacific convection biases in CMIP6. *J. Climate*, **36**, 7041–7059 (2023)

11.* **Topál**, D. & Ding, Q. Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections. *Nat Clim Chang*, **13** 710–718 (2023).

10.* **Topál**, D. et al. Discrepancies between observations and climate models of large- scale wind-driven Greenland melt influence sea-level rise projections. *Nat Commun* **13** 6833 (2022).

9.* **Topál**, D. et al. An internal atmospheric process determining summertime Arctic sea ice melting in the next three decades: lessons learned from five large ensembles and multiple CMIP5 climate simulations. *J Clim* **33** (2020).

8. **Topál**, D. et al. Refining projected multidecadal hydroclimate uncertainty in East- Central Europe using CMIP5 and single-model large ensemble simulations. *Theor Appl Clim* **142** 1147-1167 (2020)

7. Sun, X., Ding, Q., Wang, SY.S. **Topál**, D. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. *Nat Commun* **13** 1288 (2022).

6. Ballinger, TJ et al. Abrupt Northern Baffin Bay Autumn Warming and Sea-Ice Loss Since the Turn of the Twenty-First Century. *Geophys Res Lett* **49** e2022GL101472 (2022)

5. Haszpra, T., **Topál**, D. & Herein, M. On the time evolution of the Arctic oscillation and related wintertime phenomena under different forcing scenarios in an ensemble approach. *J Clim* **33**, 3107–3124 (2020).

4. Demény et al. Holocene hydrological changes in Europe and the role of the North Atlantic ocean circulation. *Quarternary International*, **571** (2021)

3. Baxter et al. How Tropical Pacific Surface Cooling Contributed to Accelerated Sea Ice Melt. *J Clim* **32** (2019)

2. Hatvani, I.G., **Topál**, **D**., Kern, Z., Ruggieri, E. Concurrent Changepoints in Greenland Ice Core δ 180 records and the North Atlantic Oscillation over the Past Millennium. *Atmosphere* **13** (2022)

1. **Topál** et al. Detecting breakpoints in artificially modified and real-life time series. *Open Geosciences* **8** (2016)